The 13 papers which experimentally study the biological roles of both TFs of the PCTFP (Bas1-Aft2)
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325
Gordan R, et al. (2009) Distinguishing direct versus indirect transcription factor-DNA interactions. Genome Res 19(11):2090-100
Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8
Fordyce PM, et al. (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28(9):970-5
Lai WK and Buck MJ (2013) An integrative approach to understanding the combinatorial histone code at functional elements. Bioinformatics 29(18):2231-7
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31
Kresnowati MT, et al. (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2():49
Lu CC, et al. (2008) Extracting transcription factor binding sites from unaligned gene sequences with statistical models. BMC Bioinformatics 9 Suppl 12:S7
Morris RT, et al. (2010) Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26(2):168-74
Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49