McIsaac RS, et al. (2012) Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway. Mol Biol Cell 23(15):2993-3007 |
Menant A, et al. (2006) Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor. J Biol Chem 281(17):11744-54 |
Dormer UH, et al. (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem 275(42):32611-6 |
Cormier L, et al. (2010) Transcriptional plasticity through differential assembly of a multiprotein activation complex. Nucleic Acids Res 38(15):4998-5014 |
Thomas D, et al. (1992) MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol 12(4):1719-27 |
Kresnowati MT, et al. (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2():49 |
Ouni I, et al. (2010) A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors. Mol Cell 40(6):954-64 |
Yu T and Li KC (2005) Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 21(21):4033-8 |
Kuras L, et al. (1996) A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. EMBO J 15(10):2519-29 |
Siggers T, et al. (2011) Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex. Mol Syst Biol 7():555 |
Carrillo E, et al. (2012) Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30. Mol Biol Cell 23(10):1928-42 |
Bussereau F, et al. (2006) The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res 6(3):325-35 |
O'Connell KF, et al. (1995) Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription. Mol Cell Biol 15(4):1879-88 |
Blaiseau PL and Thomas D (1998) Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA. EMBO J 17(21):6327-36 |
Ouni I, et al. (2011) Ubiquitin and transcription: The SCF/Met4 pathway, a (protein-) complex issue. Transcription 2(3):135-139 |
Hughes JD, et al. (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296(5):1205-14 |
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 |
Wheeler GL, et al. (2003) Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. J Biol Chem 278(50):49920-8 |
Ernst J, et al. (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3():74 |
Lee TA, et al. (2010) Dissection of combinatorial control by the met4 transcriptional complex. Mol Biol Cell 21(3):456-69 |
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325 |
Thomas D and Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61(4):503-32 |
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 |
Rouillon A, et al. (2000) Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30 )complex. EMBO J 19(2):282-94 |
Ljungdahl PO and Daignan-Fornier B (2012) Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae. Genetics 190(3):885-929 |
Geijer C, et al. (2012) Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response. BMC Genomics 13(1):554 |
Machin NA, et al. (1996) Dosage suppressors of a benomyl-dependent tubulin mutant: evidence for a link between microtubule stability and cellular metabolism. Genetics 144(4):1363-73 |
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 |
Kaiser P, et al. (2000) Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102(3):303-14 |
Omura F, et al. (1996) Single point mutations in Met4p impair the transcriptional repression of MET genes in Saccharomyces cerevisiae. FEBS Lett 387(2-3):179-83 |
Su NY, et al. (2008) A Dominant Suppressor Mutation of the met30 Cell Cycle Defect Suggests Regulation of the Saccharomyces cerevisiae Met4-Cbf1 Transcription Complex by Met32. J Biol Chem 283(17):11615-24 |
Wang Y, et al. (2009) Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res 37(18):5943-58 |
Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12 |
Hebert A, et al. (2011) Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res 11(4):366-78 |
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8 |
Rossouw D and Bauer FF (2009) Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation. Appl Microbiol Biotechnol 84(5):937-54 |
Kuras L, et al. (1997) Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding. EMBO J 16(9):2441-51 |
Petti AA, et al. (2012) Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway. Mol Biol Cell 23(15):3008-24 |
Morozov AV and Siggia ED (2007) Connecting protein structure with predictions of regulatory sites. Proc Natl Acad Sci U S A 104(17):7068-73 |