Chua G, et al. (2006) Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci U S A 103(32):12045-50 |
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325 |
Viau CM, et al. (2012) Enhanced resistance of yeast mutants deficient in low-affinity iron and zinc transporters to stannous-induced toxicity. Chemosphere 86(5):477-84 |
Song M, et al. (2009) Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast. IET Syst Biol 3(3):203 |
Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995-1014 |
Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420 |
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 |
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8 |
Kasemets K, et al. (2013) Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants. Chem Res Toxicol 26(3):356-67 |
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 |
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 |
Serero A, et al. (2008) Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity. DNA Repair (Amst) 7(8):1262-75 |
Gomes DS, et al. (2005) Evaluation of the role of Ace1 and Yap1 in cadmium absorption using the eukaryotic cell model Saccharomyces cerevisiae. Environ Toxicol Pharmacol 20(3):383-9 |