Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325 |
Gstaiger M, et al. (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302(5648):1208-12 |
Lu CC, et al. (2008) Extracting transcription factor binding sites from unaligned gene sequences with statistical models. BMC Bioinformatics 9 Suppl 12:S7 |
Rubin-Bejerano I, et al. (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100(19):11007-12 |
Yu T and Li KC (2005) Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 21(21):4033-8 |
Erb I and van Nimwegen E (2011) Transcription factor binding site positioning in yeast: proximal promoter motifs characterize tata-less promoters. PLoS One 6(9):e24279 |
Aris JP, et al. (2012) Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae. Subcell Biochem 57():161-86 |
Sosa E, et al. (2003) Gcn4 negatively regulates expression of genes subjected to nitrogen catabolite repression. Biochem Biophys Res Commun 310(4):1175-80 |
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125 |
Rodkaer SV and Faergeman NJ (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 14(5):683-96 |
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 |
Buck MJ and Lieb JD (2006) A chromatin-mediated mechanism for specification of conditional transcription factor targets. Nat Genet 38(12):1446-51 |
Lai WK and Buck MJ (2013) An integrative approach to understanding the combinatorial histone code at functional elements. Bioinformatics 29(18):2231-7 |
Boer VM, et al. (2005) Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. FEMS Yeast Res 5(10):885-97 |
Staschke KA, et al. (2010) Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 285(22):16893-911 |
Valenzuela L, et al. (1998) Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J Bacteriol 180(14):3533-40 |
Gagiano M, et al. (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2(4):433-70 |
Teixeira V and Costa V (2016) Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 61():109-33 |
Wu WS and Chen BS (2009) Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data. Bioinform Biol Insights 1():137-45 |
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 |
Swiecilo A (2016) Cross-stress resistance in Saccharomyces cerevisiae yeast-new insight into an old phenomenon. Cell Stress Chaperones () |
Alberghina L, et al. (2011) Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network. Biotechnol Adv 30(1):52-72 |
Ljungdahl PO and Daignan-Fornier B (2012) Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae. Genetics 190(3):885-929 |
Bernard A, et al. (2015) A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy 11(11):2114-2122 |
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8 |
Conrad M, et al. (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254-99 |
Boube M, et al. (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110(2):143-51 |
Fordyce PM, et al. (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28(9):970-5 |
Scherens B, et al. (2006) Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res 6(5):777-91 |
Morozov AV and Siggia ED (2007) Connecting protein structure with predictions of regulatory sites. Proc Natl Acad Sci U S A 104(17):7068-73 |
ter Schure EG, et al. (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24(1):67-83 |