Garcia SC, et al. (2000) Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p. FEMS Microbiol Lett 184(2):219-24 |
Rai R, et al. (1999) Overlapping positive and negative GATA factor binding sites mediate inducible DAL7 gene expression in Saccharomyces cerevisiae. J Biol Chem 274(39):28026-34 |
Sophianopoulou V and Diallinas G (1995) Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev 16(1):53-75 |
Cunningham TS, et al. (2000) The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. J Bacteriol 182(23):6584-91 |
Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420 |
Coffman JA, et al. (1995) Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J Bacteriol 177(23):6910-8 |
Zhao X, et al. (2013) Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae. Yeast 30(11):437-47 |
Oliveira EM, et al. (2003) The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae. Yeast 20(1):31-7 |
Andre B, et al. (1995) Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic Acids Res 23(4):558-64 |
Coffman JA, et al. (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 179(11):3416-29 |
Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12(1):35-73 |
Georis I, et al. (2009) The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol Cell Biol 29(13):3803-15 |
Jiang R, et al. (2006) Network motif identification in stochastic networks. Proc Natl Acad Sci U S A 103(25):9404-9 |
Liao XH, et al. (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35(4):761-70 |
Neklesa TK and Davis RW (2009) A Genome-Wide Screen for Regulators of TORC1 in Response to Amino Acid Starvation Reveals a Conserved Npr2/3 Complex. PLoS Genet 5(6):e1000515 |
Pires EJ, et al. (2014) Yeast: the soul of beer's aroma-a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98(5):1937-49 |
Erb I and van Nimwegen E (2011) Transcription factor binding site positioning in yeast: proximal promoter motifs characterize tata-less promoters. PLoS One 6(9):e24279 |
Cunningham TS and Cooper TG (1991) Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. |
Svetlov VV and Cooper TG (1998) The Saccharomyces cerevisiae GATA factors Dal80p and Deh1p can form homo- and heterodimeric complexes. J Bacteriol 180(21):5682-8 |
van Der Merwe GK, et al. (2001) Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia. J Biol Chem 276(31):28659-66 |
Levi CE, et al. (2012) GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: role of the key transcription factors acting in this process. Biochem Biophys Res Commun 421(3):572-7 |
Distler M, et al. (2001) Green fluorescent protein-Dal80p illuminates up to 16 distinct foci that colocalize with and exhibit the same behavior as chromosomal DNA proceeding through the cell cycle of Saccharomyces cerevisiae. J Bacteriol 183(15):4636-42 |
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125 |
Rodkaer SV and Faergeman NJ (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 14(5):683-96 |
Michoel T, et al. (2009) Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst Biol 3:49 |
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 |
Gagiano M, et al. (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2(4):433-70 |
Ungar L, et al. (2011) Tor complex 1 controls telomere length by affecting the level of Ku. Curr Biol 21(24):2115-20 |
Svetlov V and Cooper TG (1997) The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids. J Bacteriol 179(24):7644-52 |
Cunningham TS and Cooper TG (1993) The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences (URSGATA). J Bacteriol 175(18):5851-61 |
Miller C, et al. (2011) Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol 7():458 |
Cardillo SB, et al. (2012) Interplay between the transcription factors acting on the GATA- and GABA-responsive elements of Saccharomyces cerevisiae UGA promoters. Microbiology 158(Pt 4):925-35 |
Daugherty JR, et al. (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J Bacteriol 175(1):64-73 |
Luzzani C, et al. (2007) New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription. Microbiology 153(Pt 11):3677-3684 |
Busti S, et al. (2012) Overexpression of Far1, a cyclin-dependent kinase inhibitor, induces a large transcriptional reprogramming in which RNA synthesis senses Far1 in a Sfp1-mediated way. Biotechnol Adv 30(1):185-201 |
Bandhakavi S, et al. (2008) Hsf1 Activation Inhibits Rapamycin Resistance and TOR Signaling in Yeast Revealed by Combined Proteomic and Genetic Analysis. PLoS One 3(2):e1598 |
Cunningham TS, et al. (2000) Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem 275(19):14408-14 |
Wong KH, et al. (2008) Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 7(6):917-25 |
Georis I, et al. (2009) Nitrogen Catabolite Repression-Sensitive Transcription as a Readout of Tor Pathway Regulation: The Genetic Background, Reporter Gene and GATA Factor Assayed Determine the Outcomes. Genetics 181(3):861-74 |
Ljungdahl PO and Daignan-Fornier B (2012) Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae. Genetics 190(3):885-929 |
Iraqui I, et al. (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19(5):3360-71 |
Wu WS and Chen BS (2009) Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data. Bioinform Biol Insights 1():137-45 |
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 |
Swiecilo A (2016) Cross-stress resistance in Saccharomyces cerevisiae yeast-new insight into an old phenomenon. Cell Stress Chaperones () |
Scott S, et al. (2000) Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae. J Biol Chem 275(40):30886-93 |
Lai FJ, et al. (2014) A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms. BMC Syst Biol 8 Suppl 4():S9 |
Tate JJ, et al. (2006) Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Npr1. J Biol Chem 281(38):28460-9 |
Li D and Kolattukudy PE (1995) Cloning and expression of cDNA encoding a protein that binds a palindromic promoter element essential for induction of fungal cutinase by plant cutin. J Biol Chem 270(20):11753-6 |
Barea F and Bonatto D (2009) Aging defined by a chronologic-replicative protein network in Saccharomyces cerevisiae: an interactome analysis. Mech Ageing Dev 130(7):444-60 |
Coffman JA and Cooper TG (1997) Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. J Bacteriol 179(17):5609-13 |
Jin M and Klionsky DJ (2014) Regulation of autophagy: Modulation of the size and number of autophagosomes. FEBS Lett 588(15):2457-2463 |
Valenzuela L, et al. (1998) Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J Bacteriol 180(14):3533-40 |
Georis I, et al. (2011) Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine. J Biol Chem 286(52):44897-912 |
Soussi-Boudekou S, et al. (1997) Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 23(6):1157-68 |
Coffman JA, et al. (1996) Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16(3):847-58 |
Magasanik B and Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290(1-2):1-18 |
ElBerry HM, et al. (1993) Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J Bacteriol 175(15):4688-98 |
Cunningham TS, et al. (1994) The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J Bacteriol 176(15):4718-25 |
Guelzim N, et al. (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1):60-3 |
Conrad M, et al. (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254-99 |
Morozov AV and Siggia ED (2007) Connecting protein structure with predictions of regulatory sites. Proc Natl Acad Sci U S A 104(17):7068-73 |
ter Schure EG, et al. (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24(1):67-83 |