Carreto L, et al. (2011) Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics 12(1):201 |
Mazumder A, et al. (2013) Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae. Nucleic Acids Res 41(20):9310-24 |
Shah AN, et al. (2011) Deletion of a subgroup of ribosome-related genes minimizes hypoxia-induced changes and confers hypoxia tolerance. Physiol Genomics 43(14):855-72 |
Chua G, et al. (2006) Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci U S A 103(32):12045-50 |
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125 |
Boender LG, et al. (2011) Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states. Biochim Biophys Acta 1813(12):2133-44 |
Makanae K, et al. (2013) Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res 23(2):300-11 |
Busti S, et al. (2010) Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors (Basel) 10(6):6195-240 |
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 |
Ernst J, et al. (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3():74 |
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 |
Geijer C, et al. (2012) Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response. BMC Genomics 13(1):554 |
Wu WS and Chen BS (2009) Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data. Bioinform Biol Insights 1():137-45 |
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 |
Swiecilo A (2016) Cross-stress resistance in Saccharomyces cerevisiae yeast-new insight into an old phenomenon. Cell Stress Chaperones () |
Oki M, et al. (2004) Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol Cell Biol 24(5):1956-67 |
Ye Y, et al. (2009) Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Biochem Biophys Res Commun 385(3):357-62 |
Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12 |
Chen X, et al. (2010) A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data. Bioinformatics 26(12):i334-42 |
de Virgilio C (2012) The essence of yeast quiescence. FEMS Microbiol Rev 36(2):306-39 |
Hosiner D, et al. (2009) Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response. Mol Biol Cell 20(3):1048-57 |
Conrad M, et al. (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254-99 |
Morris RT, et al. (2010) Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26(2):168-74 |