Costa V and Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22(4-5):217-46 |
Chen G, et al. (2007) Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biol 8(1):R4 |
Engelberg D, et al. (2014) Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 26(12):2865-78 |
Rojas M, et al. (2008) Selective inhibition of yeast regulons by daunorubicin: a transcriptome-wide analysis. BMC Genomics 9:358 |
Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24(4):469-86 |
Yu T and Li KC (2005) Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 21(21):4033-8 |
Rodriguez-Colman MJ, et al. (2010) The forkhead transcription factor hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285(47):37092-101 |
Chua G, et al. (2006) Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci U S A 103(32):12045-50 |
Teixeira MC, et al. (2011) A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae. Curr Opin Biotechnol 22(2):150-156 |
Mager WH and De Kruijff AJ (1995) Stress-induced transcriptional activation. Microbiol Rev 59(3):506-31 |
Yazgan O and Krebs JE (2012) Mitochondrial and nuclear genomic integrity after oxidative damage in Saccharomyces cerevisiae. Front Biosci 17():1079-93 |
Perez-Landero S, et al. (2015) Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences. BMC Syst Biol 9():42 |
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125 |
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 |
Murray DB, et al. (2011) Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta 1810(10):945-58 |
Lai WK and Buck MJ (2013) An integrative approach to understanding the combinatorial histone code at functional elements. Bioinformatics 29(18):2231-7 |
Raitt DC, et al. (2000) The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11(7):2335-47 |
Ernst J, et al. (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3():74 |
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325 |
Morano KA, et al. (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157-95 |
Hong SY, et al. (2013) Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins (Basel) 5(4):683-702 |
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 |
Santos PM, et al. (2009) Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics 9(3):657-70 |
Wu WS and Chen BS (2009) Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data. Bioinform Biol Insights 1():137-45 |
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 |
Swiecilo A (2016) Cross-stress resistance in Saccharomyces cerevisiae yeast-new insight into an old phenomenon. Cell Stress Chaperones () |
Banerjee N and Zhang MQ (2003) Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res 31(23):7024-31 |
Brown JL, et al. (1993) SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol 175(2 |
Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12 |
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8 |
van Werven FJ, et al. (2009) Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat Struct Mol Biol 16(10):1043-8 |
Morozov AV and Siggia ED (2007) Connecting protein structure with predictions of regulatory sites. Proc Natl Acad Sci U S A 104(17):7068-73 |
Kundaje A, et al. (2006) A classification-based framework for predicting and analyzing gene regulatory response. BMC Bioinformatics 7 Suppl 1():S5 |