The 12 papers which experimentally study the biological roles of both TFs of the PCTFP (Mbp1-Leu3)
Hart CE, et al. (2006) Connectivity in the yeast cell cycle transcription network: inferences from neural networks. PLoS Comput Biol 2(12):e169
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325
Chen G, et al. (2007) Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biol 8(1):R4
Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31
Lu CC, et al. (2008) Extracting transcription factor binding sites from unaligned gene sequences with statistical models. BMC Bioinformatics 9 Suppl 12:S7
Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49
Ye C, et al. (2009) Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast. PLoS Comput Biol 5(3):e1000311