The 25 papers which experimentally study the biological roles of both TFs of the PCTFP (Mbp1-Msn4)
Chen G, et al. (2007) Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biol 8(1):R4
Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420
Rojas M, et al. (2008) Selective inhibition of yeast regulons by daunorubicin: a transcriptome-wide analysis. BMC Genomics 9:358
Morano KA, et al. (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157-95
Elemento O, et al. (2007) A Universal Framework for Regulatory Element Discovery across All Genomes and Data Types. Mol Cell 28(2):337-50
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35
Busti S, et al. (2010) Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors (Basel) 10(6):6195-240
Yu X, et al. (2006) Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Res 34(3):917-27
Ernst J, et al. (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3():74
Wu WS, et al. (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7(1):421
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325
Lai LC, et al. (2008) Comparison of the transcriptomic "stress response" evoked by antimycin A and oxygen deprivation in saccharomyces cerevisiae. BMC Genomics 9:627
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294
Asif HM and Sanguinetti G (2013) Simultaneous inference and clustering of transcriptional dynamics in gene regulatory networks. Stat Appl Genet Mol Biol 12(5):545-57
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31
Lai FJ, et al. (2014) A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms. BMC Syst Biol 8 Suppl 4():S9
Wang Y, et al. (2009) Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res 37(18):5943-58
Goh WS, et al. (2010) Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local. PLoS Comput Biol 6(1):e1000649
Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8
Pramila T, et al. (2006) The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 20(16):2266-78
Lai LC, et al. (2006) Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. Eukaryot Cell 5(9):1468-89
Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49
Brohee S, et al. (2011) Unraveling networks of co-regulated genes on the sole basis of genome sequences. Nucleic Acids Res 39(15):6340-58