| Chen G, et al. (2007) Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biol 8(1):R4 | 
        
                
            | Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420 | 
        
                
            | Morgan BA, et al. (1995) A yeast transcription factor bypassing the requirement for SBF and DSC1/MBF in budding yeast has homology to bacterial signal transduction proteins. EMBO J 14(22):5679-89 | 
        
                
            | Noor A, et al. (2013) ROBNCA: robust network component analysis for recovering transcription factor activities. Bioinformatics 29(19):2410-8 | 
        
                
            | Rojas M, et al. (2008) Selective inhibition of yeast regulons by daunorubicin: a transcriptome-wide analysis. BMC Genomics 9:358 | 
        
                
            | Contador CA, et al. (2011) Identification of transcription factors perturbed by the synthesis of high levels of a foreign protein in yeast saccharomyces cerevisiae. Biotechnol Prog 27(4):925-36 | 
        
                
            | Vohradsky J (2012) Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes. Nucleic Acids Res 40(15):7096-103 | 
        
                
            | Wu WS, et al. (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7(1):421 | 
        
                
            | Morano KA, et al. (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157-95 | 
        
                
            | Chua G, et al. (2006) Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci U S A 103(32):12045-50 | 
        
                
            | Goh WS, et al. (2010) Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local. PLoS Comput Biol 6(1):e1000649 | 
        
                
            | Emmert-Streib F and Dehmer M (2009) Information processing in the transcriptional regulatory network of yeast: fnctional robustness. BMC Syst Biol 3:35 | 
        
                
            | Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125 | 
        
                
            | Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 | 
        
                
            | Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 | 
        
                
            | Lai LC, et al. (2006) Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. Eukaryot Cell 5(9):1468-89 | 
        
                
            | Ernst J, et al. (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3():74 | 
        
                
            | Manioudaki ME and Poirazi P (2013) Modeling regulatory cascades using Artificial Neural Networks: the case of transcriptional regulatory networks shaped during the yeast stress response. Front Genet 4():110 | 
        
                
            | Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325 | 
        
                
            | Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 | 
        
                
            | Ear PH and Michnick SW (2009) A general life-death selection strategy for dissecting protein functions. Nat Methods 6(11):813-6 | 
        
                
            | Bouquin N, et al. (1999) Association of the cell cycle transcription factor Mbp1 with the Skn7 response regulator in budding yeast. Mol Biol Cell 10(10):3389-400 | 
        
                
            | Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 | 
        
                
            | Banerjee N and Zhang MQ (2003) Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res 31(23):7024-31 | 
        
                
            | Ye C, et al. (2009) Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast. PLoS Comput Biol 5(3):e1000311 | 
        
                
            | Wang Y, et al. (2009) Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res 37(18):5943-58 | 
        
                
            | Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12 | 
        
                
            | Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8 | 
        
                
            | Hansen L, et al. (2012) Differences in local genomic context of bound and unbound motifs. Gene 506(1):125-34 | 
        
                
            | Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49 |