The 23 papers which experimentally study the biological roles of both TFs of the PCTFP (Pho4-Yap1)
Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12
Chen G, et al. (2007) Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biol 8(1):R4
Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420
Chua G, et al. (2006) Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci U S A 103(32):12045-50
Nguyen Ba AN, et al. (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10:202
Emmert-Streib F and Dehmer M (2009) Information processing in the transcriptional regulatory network of yeast: fnctional robustness. BMC Syst Biol 3:35
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125
Bussereau F, et al. (2006) The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res 6(3):325-35
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35
Cardona F, et al. (2012) Phylogenetic origin and transcriptional regulation at the post-diauxic phase of SPI1, in Saccharomyces cerevisiae. Cell Mol Biol Lett 17(3):393-407
Dos Santos SC, et al. (2009) Transcriptomic profiling of the Saccharomyces cerevisiae response to quinine reveals a glucose limitation response attributable to drug-induced inhibition of glucose uptake. Antimicrob Agents Chemother 53(12):5213-23
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325
Conlon EM, et al. (2003) Integrating regulatory motif discovery and genome-wide expression analysis. Proc Natl Acad Sci U S A 100(6):3339-44
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31
Lu CC, et al. (2008) Extracting transcription factor binding sites from unaligned gene sequences with statistical models. BMC Bioinformatics 9 Suppl 12:S7
Wang Y, et al. (2009) Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res 37(18):5943-58
Galbraith SJ, et al. (2006) Transcriptome network component analysis with limited microarray data. Bioinformatics 22(15):1886-94
Siddharthan R, et al. (2005) PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. PLoS Comput Biol 1(7):e67
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8
Arino J (2010) Integrative Responses to High pH Stress in S. cerevisiae. OMICS 14(5):517-23
Fordyce PM, et al. (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28(9):970-5
Morozov AV and Siggia ED (2007) Connecting protein structure with predictions of regulatory sites. Proc Natl Acad Sci U S A 104(17):7068-73