Hughes JD, et al. (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296(5):1205-14 |
Ye Y, et al. (2009) Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Biochem Biophys Res Commun 385(3):357-62 |
Franken J and Bauer FF (2010) Carnitine supplementation has protective and detrimental effects in Saccharomyces cerevisiae that are genetically mediated. FEMS Yeast Res 10(3):270-81 |
Lavina WA, et al. (2014) Suppression mechanism of the calcium sensitivity in Saccharomyces cerevisiae ptp2?msg5? double disruptant involves a novel HOG-independent function of Ssk2, transcription factor Msn2 and the protein kinase A component Bcy1. J Bios |
Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125 |
Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420 |
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 |
Berthelet S, et al. (2010) Functional Genomics Analysis of the Saccharomyces cerevisiae Iron Responsive Transcription Factor Aft1 Reveals Iron-Independent Functions. Genetics 185(3):1111-28 |
Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8 |
Alex D, et al. (2012) Amino acid-derived 1,2-benzisothiazolinone derivatives as novel small-molecule antifungal inhibitors: identification of potential genetic targets. Antimicrob Agents Chemother 56(9):4630-9 |
Santos PM, et al. (2009) Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics 9(3):657-70 |
Lai WK and Buck MJ (2013) An integrative approach to understanding the combinatorial histone code at functional elements. Bioinformatics 29(18):2231-7 |
Lu CC, et al. (2008) Extracting transcription factor binding sites from unaligned gene sequences with statistical models. BMC Bioinformatics 9 Suppl 12:S7 |
Landstetter N, et al. (2010) Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast. OMICS 14(6):651-63 |
Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 |
Morris RT, et al. (2010) Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26(2):168-74 |
Ruotolo R, et al. (2008) Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast. Genome Biol 9(4):R67 |
Fordyce PM, et al. (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28(9):970-5 |
North M, et al. (2011) Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast. PLoS One 6(8):e24205 |