| Hanlon SE, et al. (2011) The Stress Response Factors Yap6, Cin5, Phd1, and Skn7 Direct Targeting of the Conserved Co-Repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 6(4):e19060 | 
        
                
            | Zheng J, et al. (2010) Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 6():420 | 
        
                
            | Contador CA, et al. (2011) Identification of transcription factors perturbed by the synthesis of high levels of a foreign protein in yeast saccharomyces cerevisiae. Biotechnol Prog 27(4):925-36 | 
        
                
            | Kresnowati MT, et al. (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2():49 | 
        
                
            | Manioudaki ME and Poirazi P (2013) Modeling regulatory cascades using Artificial Neural Networks: the case of transcriptional regulatory networks shaped during the yeast stress response. Front Genet 4():110 | 
        
                
            | Goh WS, et al. (2010) Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local. PLoS Comput Biol 6(1):e1000649 | 
        
                
            | Gordan R, et al. (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125 | 
        
                
            | Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49 | 
        
                
            | Swamy KB, et al. (2009) Impact of DNA-binding position variants on yeast gene expression. Nucleic Acids Res 37(21):6991-7001 | 
        
                
            | Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 | 
        
                
            | Ni L, et al. (2009) Dynamic and complex transcription factor binding during an inducible response in yeast. Genes Dev 23(11):1351-63 | 
        
                
            | Murray DB, et al. (2011) Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta 1810(10):945-58 | 
        
                
            | Lai WK and Buck MJ (2013) An integrative approach to understanding the combinatorial histone code at functional elements. Bioinformatics 29(18):2231-7 | 
        
                
            | Wu WS, et al. (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7(1):421 | 
        
                
            | Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325 | 
        
                
            | Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 | 
        
                
            | Martinez-Montanes F, et al. (2010) Toward a genomic view of the gene expression program regulated by osmostress in yeast. OMICS 14(6):619-27 | 
        
                
            | Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 | 
        
                
            | Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12 | 
        
                
            | Babbitt GA (2010) Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 466(1-2):43-8 | 
        
                
            | Roberts Iii GG and Hudson AP (2009) Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae. Yeast 26(2):95-110 | 
        
                
            | Morozov AV and Siggia ED (2007) Connecting protein structure with predictions of regulatory sites. Proc Natl Acad Sci U S A 104(17):7068-73 | 
        
                
            | Kundaje A, et al. (2006) A classification-based framework for predicting and analyzing gene regulatory response. BMC Bioinformatics 7 Suppl 1():S5 |