The 10 papers which experimentally study the biological roles of both TFs of the PCTFP (Ume6-Arg80)
Park HD, et al. (1999) Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae. J Bacteriol 181(22):7052-64
Dubois E and Messenguy F (1997) Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to differentnitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p. Mol Gen Genet 253(5):568-
Zhao Y, et al. (2008) Development of a Novel Oligonucleotide Array-Based Transcription Factor Assay Platform for Genome-Wide Active Transcription Factor Profiling in Saccharomyces cerevisiae. J Proteome Res 7(3):1315-1325
Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294
Bussereau F, et al. (2006) The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res 6(3):325-35
Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35
Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31
Lai WK and Buck MJ (2013) An integrative approach to understanding the combinatorial histone code at functional elements. Bioinformatics 29(18):2231-7
Messenguy F, et al. (2000) In Saccharomyces cerevisiae, expression of arginine catabolic genes CAR1 and CAR2 in response to exogenous nitrogen availability is mediated by the Ume6 (CargRI)-Sin3 (CargRII)-Rpd3 (CargRIII) complex. J Bacteriol 182(11):3158-6
Ljungdahl PO and Daignan-Fornier B (2012) Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae. Genetics 190(3):885-929